首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   40篇
  2023年   5篇
  2021年   5篇
  2018年   1篇
  2017年   3篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   14篇
  2011年   5篇
  2010年   8篇
  2009年   3篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   9篇
  2004年   15篇
  2003年   11篇
  2002年   11篇
  2001年   13篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   3篇
  1974年   5篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1961年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
71.
Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Baccatin III, an intermediate of Taxol biosynthesis and a useful precursor for semisynthesis of the anti-cancer drug, is produced in yew (Taxus) species by a sequence of 15 enzymatic steps from primary metabolism. Ten genes encoding enzymes of this extended pathway have been described, thereby permitting a preliminary attempt to reconstruct early steps of taxane diterpenoid (taxoid) metabolism in Saccharomyces cerevisiae as a microbial production host. Eight of these taxoid biosynthetic genes were functionally expressed in yeast from episomal vectors containing one or more gene cassettes incorporating various epitope tags to permit protein surveillance and differentiation of those pathway enzymes of similar size. All eight recombinant proteins were readily detected by immunoblotting using specific monoclonal antibodies and each expressed protein was determined to be functional by in vitro enzyme assay, although activity levels differed considerably between enzyme types. Using three plasmids carrying different promoters and selection markers, genes encoding five sequential pathway steps leading from primary isoprenoid metabolism to the intermediate taxadien-5alpha- acetoxy-10beta-ol were installed in a single yeast host. Metabolite analysis showed that yeast isoprenoid precursors could be utilized in the reconstituted pathway because products accumulated from the first two engineered pathway steps (leading to the committed intermediate taxadiene); however, a pathway restriction was encountered at the first cytochrome P450 hydroxylation step. The means of overcoming this limitation are described in the context of further development of this novel approach for production of Taxol precursors and related taxoids in yeast.  相似文献   
72.
Human RECQL5 is a member of the RecQ helicase family which is implicated in genome maintenance. Five human members of the family have been identified; three of them, BLM, WRN and RECQL4 are associated with elevated cancer risk. RECQL1 and RECQL5 have not been linked to any human disorder yet; cells devoid of RECQL1 and RECQL5 display increased chromosomal instability. Here, we report the physical and functional interaction of the large isomer of RECQL5, RECQL5β, with the human flap endonuclease 1, FEN1, which plays a critical role in DNA replication, recombination and repair. RECQL5β dramatically stimulates the rate of FEN1 cleavage of flap DNA substrates. Moreover, we show that RECQL5β and FEN1 interact physically and co-localize in the nucleus in response to DNA damage. Our findings, together with the previous literature on WRN, BLM and RECQL4’s stimulation of FEN1, suggests that the ability of RecQ helicases to stimulate FEN1 may be a general feature of this class of enzymes. This could indicate a common role for the RecQ helicases in the processing of oxidative DNA damage.  相似文献   
73.
74.
Cell suspension cultures of Taxus canadensis and Taxus cuspidata rapidly produced paclitaxel (Taxol) and other taxoids in response to elicitation with methyl jasmonate. By optimizing the concentration of the elicitor, and the timing of elicitation, we have achieved the most rapid accumulation of paclitaxel in a plant cell culture, yet reported. The greatest accumulation of paclitaxel occurred when methyl jasmonate was added to cultures at a final concentration of 200 microM on day 7 of the culture cycle. The concentration of paclitaxel increased in the extracellular (cell-free) medium to 117 mg/day within 5 days following elicitation, equivalent to a rate of 23.4 mg/L per day. Paclitaxel was only one of many taxoids whose concentrations increased significantly in response to elicitation. Despite the rapid accumulation and high concentration of paclitaxel, its concentration never exceeded 20% of the total taxoids produced in the elicited culture. Two other taxoids, 13-acetyl-9-dihydrobaccatin III and baccatin VI, accounted for 39% to 62% of the total taxoids in elicited cultures. The accumulation of baccatin III did not parallel the pattern of accumulation for paclitaxel. Baccatin III continued to accumulate until the end of the culture cycle, at which point most of the cells in the culture were dead, implying a possible role as a degradation product of taxoid biosynthesis, rather than as a precursor.  相似文献   
75.
Mitochondrial DNA is exposed to oxygen radicals produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions in mitochondrial DNA may lead to structural genomic alterations, mitochondrial dysfunction, and associated degenerative diseases. The pyrimidine hydrate thymine glycol, one of many oxidative lesions, can block DNA and RNA polymerases and thereby exert negative biological effects. Mitochondrial DNA repair of this lesion is important to ensure normal mitochondrial DNA metabolism. Here, we report the purification of a novel rat liver mitochondrial thymine glycol endonuclease (mtTGendo). By using a radiolabeled oligonucleotide duplex containing a single thymine glycol lesion, damage-specific incision at the modified thymine was observed upon incubation with mitochondrial protein extracts. After purification using cation exchange, hydrophobic interaction, and size exclusion chromatography, the most pure active fractions contained a single band of approximately 37 kDa on a silver-stained gel. MtTGendo is active within a broad KCl concentration range and is EDTA-resistant. Furthermore, mtTGendo has an associated apurinic/apyrimidinic-lyase activity. MtTGendo does not incise 8-oxodeoxyguanosine or uracil-containing duplexes or thymine glycol in single-stranded DNA. Based upon functional similarity, we conclude that mtTGendo may be a rat mitochondrial homolog of the Escherichia coli endonuclease III protein.  相似文献   
76.
In addition to the anticancer drug Taxol, yew (Taxus) species produce a large variety of other taxane diterpenoids which differ mainly in the type of acyl and aroyl groups appended to the many hydroxyl functions on the taxane core; acetate esters are particularly common. Taxol bears an acetate at C10 and another at C4 thought to originate by intramolecular migration of a C5 acetate function in the process of oxetane ring formation, but many other naturally occurring taxoids bear acetate groups at C1, C2, C7, C9, and C13, in addition to C5 and C10. cDNAs encoding a taxoid 5alpha-O-acetyltransferase (taxadien-5alpha-ol as substrate) and a taxoid 10beta-O-acetyltransferase (10-deacetylbaccatin III as substrate) have been acquired from a recently isolated family of Taxus acyl/aroyltransferase clones. To explore the origins of other acetylated taxoids, the group of recombinant Taxus acyltransferases was investigated with a range of polyhydroxylated taxoids as substrates. From this survey, a new acetyltransferase clone (denoted TAX19) was identified that was capable of acetylating taxadien-5alpha-ol with activity comparable to that of the previously identified 5alpha-O-acetyltransferase (clone TAX1). However, when these two recombinant enzymes were presented with taxadien-triol and tetraol substrates, they exhibited different regiospecificities. The TAX1 enzyme preferentially acetylates the "northern" hemisphere hydroxyls at C9 and C10, whereas the TAX19 enzyme preferentially acetylates the "east-west" pole positions at C5 and C13. The TAX1 enzyme possesses the lowest KM value with taxadien-5alpha-ol (an early pathway metabolite) as substrate, with much higher KM values for the polyhydroxylated taxoid substrates, whereas the TAX19 enzyme possesses lower KM values (than the TAX1 transferase) for all taxoid substrates tested. These results suggest that both TAX1 and TAX19 acyltransferases may function at the early C5 acetylation step of taxoid metabolism, and that the TAX19 acyltransferase, because of its broader specificity for polyhydroxylated taxoids, may also function later in metabolism and be responsible for the production of many other acetylated taxoids.  相似文献   
77.
Gamma irradiation of Scotch spearmint created a mutant line, 643-10-74, which has an altered essential oil reminiscent of peppermint because the monoterpene metabolites in the oil glands of the mutant are predominantly oxygenated at the C3 position of the p-menthane ring instead of the C6 position normally found in spearmint. The limonene hydroxylase genes responsible for directing the regiochemistry of oxygenation were cloned from Scotch spearmint and mutant 643 and expressed in Escherichia coli. The limonene bydroxylase from the wild-type parent hydroxylated the C6 position while the enzyme from the mutant oxygenated the C3 position. Comparison of the amino acid sequences with other limonene hydroxylases showed that the mutant enzyme was more closely related to the peppermint limonene-3-hydroxylases than to the spearmint limonene-6-hydroxylases. Because of the sequence differences between the Scotch spearmint and mutant 643 limonene hydroxylases, it is most likely that the mutation did not occur within the structural gene for limonene hydroxylase but rather at a regulatory site within the genome that controls the expression of one or the other regiospecific variants.  相似文献   
78.
Cells from suspension cultures of Taxus cuspidata were extracted with pentane as a source of relatively non-polar taxoids. Of the 13 taxoids identified in this fraction, eight were oxygenated at C-14 and two had not been previously described. These taxoids, along with existing taxoid standards, were employed to profile the metabolites of Taxus x media cv. Hicksii cell suspension cultures induced with methyl jasmonate to produce paclitaxel (Taxol). The majority of the taxoid metabolites produced in these induced cultures were oxygenated at C-13, and not C-14.  相似文献   
79.
Turner GW  Croteau R 《Plant physiology》2004,136(4):4215-4227
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.  相似文献   
80.
Monoterpene cyclization reactions are initiated by ionization and isomerization of geranyl diphosphate, and proceed, via cyclization of bound linalyl diphosphate, through a series of carbocation intermediates with ultimate termination of the multistep cascade by deprotonation or nucleophile capture. Three structurally and mechanistically related monoterpene cyclases from Salvia officinalis, (+)-sabinene synthase (deprotonation to olefin), 1,8-cineole synthase (water capture), and (+)-bornyl diphosphate synthase (diphosphate capture), were employed to explore the structural determinants of these alternative termination chemistries. Results with chimeric recombinant enzymes, constructed by reciprocally substituting regions of sabinene synthase with the corresponding sequences from bornyl diphosphate synthase or 1,8-cineole synthase, demonstrated that exchange of the C-terminal catalytic domain is sufficient to completely switch the resulting product profile. Exchange of smaller sequence elements identified a region of roughly 70 residues from 1,8-cineole synthase that, when substituted into sabinene synthase, conferred the ability to produce 1,8-cineole. A similar strategy identified a small region of bornyl diphosphate synthase important in conducting the anti-Markovnikov addition to the bornane skeleton. Observations made with these chimeric monoterpene cyclases are discussed in the context of the recently determined crystal structure for bornyl diphosphate synthase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号